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Università della Svizzera italiana, Switzerland

7 May, 2024



Remember: modelling hazard = modelling network

Let

λsr (t) = Ysr (t)︸ ︷︷ ︸
Is (s, r) at risk?

× λ0(t)︸ ︷︷ ︸
baseline hazard

× efsr (x)︸ ︷︷ ︸
edge specific risk factors

where
▶ Ysr (t): edge specific risk indicator (known)
▶ λ0(t): global risk determinants (unknown)
▶ fsr (x): edge-specific risk determinants (unknown)

QUESTIONS:
▶ Should we extend fsr beyond fsr (x) = xsr β?
▶ If so, can we?
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Endogenous edge-specific determinants of interactions

Endogenous effects: features depending on past interactions
1. monadic: activity, popularity
2. dyadic: inertia, reciprocity
3. triadic: transitivity, cyclic closure, sender/receiver balance
4. higher-order: 4-cycle, k-star, ...

Endogenous effects relate to emergence and virality!
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Exogenous edge-specific determinants of interactions

Exogenous effects: inherent features of sender and receiver
1. monadic: Depending on either sender or receiver only:

▶ known: time-varying income, gender (measured covariates)
▶ unknown: popularity, sociability (random effects)

2. dyadic: depending on sender and receiver (e.g. same gender)

1 54K, M

2 68K, F

3 72K, M

4 64K→103K, F

5 62K, M

Events:
1. (54K, M) −→ (68K, F)
2. (68K, F) −→ (72K, M)
3. Salary increase 4: 64K → 103K.
4. (54K, M) −→ (103K, F)
5. (72K, M) −→ (103K, F)
6. (62K, M) −→ (103K, F)

Note:
▶ Opposite sex attracts interaction
▶ Higher salary attracts interaction
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Time-varying covariates

The covariate “salary difference” varies over time:

xsr (t) = Salaryr (t) − Salarys(t)
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... but its effect could be linear: fsr (x(t)) = xsr (t)β (here: β = 0.03).
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Drivers of species invasions: time-varying covariates
Most drivers change in time:
▶ lr (t): landuse in region r at time t.
▶ dsr (t): distance to region nearest to r invaded by s by time t.
▶ trsr (t): annual trade between r and regions invaded by s by time t.
▶ dtsr (t): min temp diff between r and regions invaded by s by time t.
▶ ksr (t): presence of s at time t in colonial power to which r belongs.

Modelling interactions in large longitudinal social networks: Mixed Additive REM Ernst Wit



Drivers of species invasions: time-varying covariates
Most drivers change in time:
▶ lr (t): landuse in region r at time t.
▶ dsr (t): distance to region nearest to r invaded by s by time t.
▶ trsr (t): annual trade between r and regions invaded by s by time t.
▶ dtsr (t): min temp diff between r and regions invaded by s by time t.
▶ ksr (t): presence of s at time t in colonial power to which r belongs.

Modelling interactions in large longitudinal social networks: Mixed Additive REM Ernst Wit



Drivers of species invasions: time-varying covariates
Most drivers change in time:
▶ lr (t): landuse in region r at time t.
▶ dsr (t): distance to region nearest to r invaded by s by time t.
▶ trsr (t): annual trade between r and regions invaded by s by time t.
▶ dtsr (t): min temp diff between r and regions invaded by s by time t.
▶ ksr (t): presence of s at time t in colonial power to which r belongs.

Modelling interactions in large longitudinal social networks: Mixed Additive REM Ernst Wit



Non-linear effect of salary difference

... but perhaps effect of salary difference is non-linear:
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Maybe it is more pronounced for small dif-
ferences, but less for large ones

How to account for such forms without strong assumptions?
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Splines: data-driven non-linear effects
Rather than using a particular form, we allow for a flexible function:

fsr (x) =
K∑

k=1
θkbk(x),

where {b1, . . . , bK } is some convenient spline basis.
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Time-varying effects

Alternatively, effect of salary difference might change over time:

fsr (x(t)) = xsr (t)β(t),
For example,
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This can also be fitted with splines: fsr (x(t)) =
∑

k θkbk(t)xsr (t).
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Why include random effects? Hierarchy Principle

Definition (Hierarchy principle)
Model with higher-order interactions should also include all
lower-order interactions

Sociological models often include higher-order effects, e.g.,
▶ 2nd order interactions: repetition, reciprocity,
▶ 3rd order interactions: triadic closure,

BUT: No 1st order/node effects violates hierarchy principle.

Two types of 1st order effects:
▶ Endogenous:

▶ number of interactions received
▶ number of interactions initiated

▶ Exogenous: unmeasured heterogeneity = random effects
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Mathematical form of fsr : beyond linear!

Up till now, most social scientists considered linear effects.

Instead, we propose:

fsr (x(t), z(t)) = β′x (1)
sr (t)︸ ︷︷ ︸

linear

+ β′(t)x (2)
sr (t)︸ ︷︷ ︸

time-varying

+ f (x (3)
sr (t))︸ ︷︷ ︸

non-linear

+ γ′zsr (t)︸ ︷︷ ︸
random

This is crucial:
▶ Time-varying: effects may change in long-term
▶ Non-linear:

▶ Optimum: effects might have an optimum.
▶ Saturation: effects might saturate
▶ Temporal: effects may have temporal structure

▶ Heterogeneity: people do not react in same way
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Event history model for time-to-invasion

Hazard for all species s ∈ S and regions r ∈ C:

λsr (t) = hazard of species s invading region r in year t.

by means of

λsr (t) = Ysr (t)λ0(t)ex ′
sr (t)β(t)+z ′

sr (t)γ

where
▶ Ysr (t): at risk indicator of invasion of region r by species s
▶ λ0(t): baseline hazard
▶ xsr (t): time-varying covariates
▶ zsr (t): random effect covariates
▶ γ ∼ N(0, Σγ): random effects
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Inference of REMs

Estimation of Relational Event Model

Case-control Partial Likelihood:
Randomly sample 1 non-event (ti , s∗

i , r∗
i ) for each event (ti , si , ri).

(β̂, θ̂, Σ̂γ) = arg max
n∏

i=1

e∆xi β+∆bi θ+∆zi γ

1 + e∆xi β+∆bi θ+∆zi γ

subject to smoothness constraints θtSθ ≤ c, where
▶ ∆bi = (b1(xsi ri ) − b1(xs∗

i r∗
i
), . . . , bK (xsi ri ) − bK (xs∗

i r∗
i
))

▶ ∆xi = xsi ri − xs∗
i r∗

i
and ∆zi = zsi ri − zs∗

i r∗
i
.

▶ S is a penalty matrix involving second derivatives.

This is equivalent with additive mixed effect logistic regression

Use function gam from R-package mgcv
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Inference of REMs

How to fit non-linear effect using gam

Fit interactions as non-linear function of salary difference (x).

▶ Let x.ev and x.nv be n × 1 vector of events & non-events.
▶ Let ones be n × 1 vector of ones.
▶ Define

X = cbind(x.ev,x.nv)
I = cbind(ones,-ones)

▶ Fit the non-linear model via:
gam(ones∼-1 + s(X, by=I), family = binomial)

This fits hazard function:

λsr (t) = λ0(t)efsr (x(t))
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Inference of REMs

How to fit time-varying effect using gam

Fit interactions as linear function of x with time-varying β(t):

▶ Let x.ev and x.nv be n × 1 vector of events & non-events.
▶ Let ones be n × 1 vector of ones.
▶ Let tms be n × 1 vector of event times.
▶ Define

T = cbind(tms,tms)
X = cbind(x.ev,-x.nv)

▶ Fit the time-varying effect model via:
gam(ones∼-1 + s(T, by=X), family = binomial)

This fits hazard function:

λsr (t) = λ0(t)exsr (t)β(t)
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Inference of REMs

How to fit random effects using gam

Fit interactions with random sender effect.

▶ Let s.ev be n × 1 factor of event senders.
▶ Let s.nv be n × 1 factor of non-events senders.
▶ Let ones be n × 1 vector of ones.
▶ Define

S = cbind(s.ev,s.nv)
I = cbind(ones,-ones)

▶ Fit the random effect model via:
gam(ones∼-1+s(X,by=I,bs="re"),family=binomial)

This fits hazard function:

λsr (t) = λ0(t)eγs
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Inference of REMs

Species invasions

Modelling interactions in large longitudinal social networks: Mixed Additive REM Ernst Wit



Inference of REMs

Event history model for time-to-invasion

Hazard for all species s ∈ S and regions r ∈ C:

λsr (t) = hazard of species s invading region r in year t.

by means of

λsr (t) = Ysr (t)λ0(t)ex ′
sr (t)β(t)+z ′

sr (t)γ

where
▶ Ysr (t): 0 if s is already present in r at time t
▶ λ0(t): baseline hazard
▶ xsr (t): climate, distance, trade, colonial ties, land-use
▶ zsr (t): species, region, species-interaction
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Inference of REMs

Species invasions: model selection
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Trade, climate & distance: most important factors in species
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Inference of REMs

Results: fixed effects

Birds Plants Insects Mammals
Colonial ties 0.16 -0.09 0.31 0.13

Difference in temperature -0.08 -0.04 -0.11 -0.07

From this we can conclude:
▶ Colonial ties only has an impact in dispersion of plants.
▶ Species tend to invade countries with same climatic

conditions.
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Inference of REMs

Results: distance reduces invasions
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Inference of REMs

Results: trade is becoming less important
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Inference of REMs

Results: Species have a tendency to coinvade
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Inference of REMs

Bike sharing in Washington DC

Modelling interactions in large longitudinal social networks: Mixed Additive REM Ernst Wit



Inference of REMs

Reminder: bike sharing network (100K-1M)

▶ nodes: 1300+ bike stations in
Washington DC

▶ edges: 350K rides
▶ time: between 9-31 July, 2023.

We define relational events:

(dk , ak , tk)
▶ dk : departure station
▶ ak : arrival station
▶ tk : departure time
▶ k: 1, . . . , 350, 000
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Inference of REMs

Bike-sharing model with global covariates

We consider following hazard model:

λsr (t) = λ0(t) exp{gtemp(x (temp)(t)) + gprec(x (prec)(t)) + gtod(x (ToD)(t))
+ x (comp)

s β + x (comp)
r γ

+ fdist(x (dist)
sr ) + frep(x (rep)

sr (t)) + frec(x (rec)
sr (t))}.

where
▶ Global covariates: temperature, precipitation, time-of-day
▶ Linear effects: sender/receiver competition
▶ Edge-specific: distance, repetition, reciprocity
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Inference of REMs

No sender and receiver competition (yet)

Coef. S.E. p-value
β -0.2145 0.0103 < 0.00001
γ -0.1885 0.0101 < 0.00001

Negative competition: volume of bike shares is still too low compared to
geographical concentration of bike stations.
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Inference of REMs

Global effects: temperature, precipitation, time-of-day
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Inference of REMs

Edge-effects: distance and repetition
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Inference of REMs

Dynamics of Innovation:
patent citations
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Inference of REMs

Reminder: patent citations (1M-100M)

We study
▶ 123M patent citations
▶ between 10M patents
▶ deposited some time between 1976 and 2023
▶ at US patent office
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Inference of REMs

Drivers: similarity & time-lag
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Inference of REMs

Innovation is declining since 2000
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Inference of REMs

...but it depends on scientific field
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Inference of REMs

Take-home messages

This tutorial considered effects in dynamic networks:
1. Covariates are either:

▶ Endogenous: depend on past of network
often depend on time (reciprocity, triadic closure,...), or

▶ Exogenous: depend on features of nodes
can depend on time (e.g. income changes over time)

2. Effects of covariates can be:
▶ Linear: fsr (x(t)) = xsr (t)β
▶ Time-varying: fsr (x(t)) = xsr (t)β(t)
▶ Non-linear: fsr (x(t)) arbitrary function

3. Random effects account for unmodelled heterogeneity.
4. Estimation of parameters via sampled partial likelihood:

▶ for each event (si , ri , ti) sample one non-event (s∗
i , r∗

i , ti)
▶ Fit mixed additive logistic regression with mgcv::gam
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