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A funny poem

Normally, probability starts with an urn of coloured balls.
We start with a poem:

Do you carrot all for me?
My heart beets for you,
With your turnip nose
And your radish face,
You are a peach.

If we cantaloupe,
Lettuce marry:

Weed make a swell pear.

consisting of 28 different words.
Task 1. Pick one random word from poem and write down. @
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Have you magically chosen the same word?

How likely is it that at least two of you selected same word? I

Choose from:

10%, 40%, 80%, 95%?7
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What are the chances...

The 28 words in poem consist of:

o 9 food items: carrot, beets, turnip, radish, peach,
cantaloupe, lettuce, weed, pear.

o 3 body parts: heart, nose, face

o 4 verbs: do, are, marry, make

o 5 pronouns: you, me, my, your, we

o 7 others: all, for, with, and, a, if, swell

Task 2. What is the probability that you chose a food item?

L7
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What are the chances...

The 28 words in poem consist of:

o 9 food items: carrot, beets, turnip, radish, peach,

cantaloupe, lettuce, weed, pear.
o 3 body parts: heart, nose, face
o 4 verbs: do, are, marry, make
o 5 pronouns: you, me, my, your, we
o 7 others: all, for, with, and, a, if, swell

Task 2. What is the probability that you chose a food item?

P(chose food item) = 29—8 =0.32
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Probability rules!
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Definition of probability according to Marquis de Laplace (1779)

Probability of event is ratio of
o number of cases favorable, to
o number of all cases possible;

when nothing leads us to expect
that any one of these cases should
occur more than any other, which
renders them, for us, equally possible.

Pierre Simon Laplace @
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Definition of probability according to Marquis de Laplace (1779)

Probability of event is ratio of
o number of cases favorable, to
o number of all cases possible;

when nothing leads us to expect
that any one of these cases should
occur more than any other, which
renders them, for us, equally possible.

In mathematical terms:

P(E) = Number of elements in £
~ Total number of elements

Pierre Simon Laplace where £ is an event. @
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Sample space

Consider a process with an uncertain outcome:
o amount of rain in Lugano tomorrow,
o roll of a die,
@ Word chosen from funny poem.
Collection of all possible outcomes is the Sample Space.

Srain =
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Sample space

Consider a process with an uncertain outcome:
o amount of rain in Lugano tomorrow,
o roll of a die,
@ Word chosen from funny poem.
Collection of all possible outcomes is the Sample Space.

Srain = {x [ x > 0},

Sdie =
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Sample space

Consider a process with an uncertain outcome:
o amount of rain in Lugano tomorrow,
o roll of a die,
@ Word chosen from funny poem.

Collection of all possible outcomes is the Sample Space.

Stain = {x | x > 0},

Sd|e = {172a 3>4a 5? 6}

Spoem = {do, you, carrot, all, ..., swell, pear}

Conclusion
o]
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Events

An event is a subset of the sample space.
E = word is a verb
is an event w.r.t. Spoem, since
E = {do, are, marry, make} C Spoem-

The set
F = word is funny

is not an event w.r.t. Spoem, because F ¢ Spoem-
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Combining events

Consider selecting word from poem and following two events:

A = food item
B = contains letter “w”,

then we can combine the events as follows:
ANB =
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Combining events

Consider selecting word from poem and following two events:
A = food item
B = contains letter “w”,
then we can combine the events as follows:
ANB = {weed}
AuB =
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Combining events

Consider selecting word from poem and following two events:
A = food item
B = contains letter “w”,
then we can combine the events as follows:
ANB = {weed}
AUB = {carrot, ..., pear, we, with, swell}
A® =
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Combining events

Consider selecting word from poem and following two events:
A = food item
B = contains letter “w”,
then we can combine the events as follows:
ANB = {weed}
AUB = {carrot, ..., pear, we, with, swell}
A® = {heart, nose, ..., if, swell}
B¢ =
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Combining events

Consider selecting word from poem and following two events:

A = food item
B = contains letter “w”,

then we can combine the events as follows:
ANB = {weed}

AUB = {carrot, ..., pear, we, with, swell}
A® = {heart, nose, ..., if, swell}
B® = Spoem — {weed, we, with, swell}
A°UB® =

L7
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Combining events

Consider selecting word from poem and following two events:

A = food item
B = contains letter “w”,

then we can combine the events as follows:
ANB = {weed}

AUB = {carrot, ..., pear, we, with, swell}
A® = {heart, nose, ..., if, swell}
B¢ = Spoem — {weed, we, with, swell}
A°uB°® = Spoem = {weed}
(A°UB%)°¢ =

L7
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Combining events

Consider selecting word from poem and following two events:

A = food item
B = contains letter “w”,

then we can combine the events as follows:
ANB = {weed}

AUB = {carrot, ..., pear, we, with, swell}
A® = {heart, nose, ..., if, swell}
B® = Spoem — {weed, we, with, swell}
A°UB® = Spoem — {weed}
(A°UB°)°¢ = {weed}
A general rule helpful in calculating probabilities: @
(AnB) = (A°UB°°
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Complement: “not”
Probability that event does not happen:
P(E°) =1 — P(E).
For example, let E = word is not food item, then

P(E) = 1-P(E®)
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Complement: “not”
Probability that event does not happen:
P(E°) =1 — P(E).
For example, let E = word is not food item, then

P(E) = 1-P(E°)
= 1— P({word is food item})
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Complement: “not”
Probability that event does not happen:
P(E°) =1 — P(E).
For example, let E = word is not food item, then

P(E) = 1-P(E°
= 1— P({word is food item})
= 1-9/28
= 19/28

Here, gains of “switching to complement” are not very high.

o “at most x” questions, where x is high,

Complements are often good strategy when confronted with I
o “at least y” questions, where y is low.
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Intersections: “and”

The interaction operator is typically described as “and”:
AN B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {fooditem}
B = {contains a “w”

P(ANB) =

L7
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Intersections: “and”

The interaction operator is typically described as “and”:
AN B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {fooditem}
B = {contains a “w”}

P(ANB) = P(weed)
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Intersections: “and”

The interaction operator is typically described as “and”:
AN B means “both A, and B”.

Example: Poem. Probability of selecting food item with a “w”?

A = {fooditem}
B = {contains a “w”}

P(ANB) = P(weed)
1

28

L7
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Unions: “or”

Union operator is non-exclusive “or”:
AU B means “or A, or B, or both”.

This corresponds to area contained in both circles:

Mutually Exclusive Events Non-Mutually Exclusive Events

A B A B

P(A or B) = P(A) + P(B) P(A or B) = P(A) + P(B) — P(A and B)
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Example of union: “or”
p

For example, consider again:

A = {food item}

B = {contains a “w”
SO

P(AuB) = P(A)+ P(B)—- P(AnB)
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Example of union: “or”

For example, consider again:

A = {food item}

B = {contains a “w”
SO

P(AUB) = P(A)+ P(B)— P(AN B)
— 9/28+4/28 —1/28
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Example of union: “or”
p

For example, consider again:

A = {food item}
B = {contains a “w”

SO
P(AUB) = P(A)+ P(B)— P(An B)
— 9/28+4/28—1/28
= 12/28
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Example: 2 words from poem

Consider words you and your neighbour selected from poem.

What is sample space?

Spoem2 -
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Example: 2 words from poem

Consider words you and your neighbour selected from poem.

What is sample space?

Spoem2 = {(carrot, carrot), ... (carrot, pear),. .., (pear, pear)}

L7
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Example: 2 words from poem
Consider words you and your neighbour selected from poem.
What is sample space?

Sp GEriR = {(carrot, carrot), ... (carrot, pear),. .., (pear, pear)}
= {28 x 28 word combinations}

Let’s consider the event
E = {both of you choose food items}

Note,
|E|l =

L7
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Example: 2 words from poem
Consider words you and your neighbour selected from poem.
What is sample space?

Spoem2 = {(carrot, carrot), ... (carrot, pear),. .., (pear, pear)}
= {28 x 28 word combinations}
Let’s consider the event
E = {both of you choose food items}

Note,
|E| =9 x 9.

If you didn’t cheat, then

.
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Example: 2 words from poem
Consider words you and your neighbour selected from poem.
What is sample space?

Spoem2 = {(carrot, carrot), ... (carrot, pear),. .., (pear, pear)}
= {28 x 28 word combinations}
Let’s consider the event
E = {both of you choose food items}

Note,
|E| =9 x 9.

If you didn’t cheat, then

9x9
PE) = o — 10 @
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Independence

There is something special about previous example:
Your word does not affect your neighbour’s word

So, events
A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.
In case of independent events, we can use
P(An B) = P(A)P(B)
Example. 2 words from poem
P(ANB) =
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Independence

There is something special about previous example:
Your word does not affect your neighbour’s word

So, events
A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.
In case of independent events, we can use
P(AN B) = P(A)P(B)
Example. 2 words from poem
P(ANnB) = P(A)P(B)
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Independence

There is something special about previous example:
Your word does not affect your neighbour’s word

So, events
A = {your word is food item}
B = {your neighbour’s word is food item}

are so-called independent events.
In case of independent events, we can use
P(AN B) = P(A)P(B)
Example. 2 words from poem
P(ANnB) = P(A)P(B)

= X
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Have you magically chosen the same word?

How likely is it that at least two of you selected same word? I

Choose from:

10%, 40%, 80%, 95%?7

L7
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match

Bayes’ Theorem
0000000

Conclusion
o]
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E€ = no words match

Conclusion
o]
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:

E° = ﬂ,'J'A,'j.

Then, assuming independence among the Aj;:
P(E) =
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:

E° = ﬂ,'J'A,'j.

Then, assuming independence among the Aj;:
P(E) = 1-P(E?
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:

E° = ﬂ,'J'A,'j.

Then, assuming independence among the Aj;:
P(E) = 1-P(E?
= 1= P(ni;A)
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:

E° = ﬂ,'J'A,'j.

Then, assuming independence among the Aj;:
P(E) = 1-P(E?
= 1= P(ni;A)

= 1-]] P4y
i\
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Magic?

Let’s begin by defining relevant events:
o E = at least two words match
o E° = no words match
o Aj = words of person i and j do not match
o Note that we can write E€ in terms of Aj;:

E° = ﬂ,'J'A,'j.
Then, assuming independence among the Aj;:
P(E) = 1-P(E?
= 1= P(ni;A)
= 1-]] P4y
if

13

_ 1_(1_;8)“):0.94
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Conditional Probabilities
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Dependence

Independence is great, because
o we can focus on smaller sample space
@ which makes calculations easier
However, often events are not independent.
Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w”

1 9 4
0.04 = o= = P(ANB) # P(AP(B) = 5oz =

0.05
How can we do simple calculations with dependent events? @
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Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

E = 1stcardis ace
F = 2ndcardis ace
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Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

E = 1stcardis ace
F = 2ndcardis ace
P(ENF) = ii
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Definition of conditional probability

Example. Draw 2 cards from deck without replacement.

E = 1stcardis ace
F = 2ndcardis ace
4 3
P(ENF) = E5E{
= P(E)P(FIE)

where P(F|E) is the probability of F given E.

Definition. Conditional probability of A if B happened:

P(A|B):%.




Random words Probability rules Conditional probabilities Bayes’ Theorem Conclusion
[e]e]e} 0000000000000 [e]ele] lo] 0000000 o]

Using conditional probabilities

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “‘w”

P(ANB) =
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Using conditional probabilities

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w"}

P(ANB) = P(A)P(B|A)
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Using conditional probabilities

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w"}

P(ANB) = P(A)P(B|A)
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Using conditional probabilities

Example: Poem. Probability of selecting food item with a “w”?

A = {food item}
B = {contains a “w"}

P(ANB) = P(A)P(B|A)
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

A; = Ace in ith draw
So we want to know,

P(A1 N Ao ﬂA3) =
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Conclusion
o]

Example. Consider taking a 3 cards from a pack of cards.

What is the probability that they are all aces?
A; = Ace in ith draw

So we want to know,

P(A1 N Ao ﬂA3) = P(A1) X P(Ag | A1) X P(A3 | Aq ﬂAg)

L7
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Conclusion
o]

Example. Consider taking a 3 cards from a pack of cards.

What is the probability that they are all aces?
A; = Ace in ith draw

So we want to know,

P(A1 N Ao ﬂA3) = P(A1) X P(Ag | A1) X P(A3 | Aq ﬂAg)

X

R

L7
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

A; = Ace in ith draw
So we want to know,
P(A1ﬂA2ﬂA3) = P(A1) P(A2|A1)XP(A3|A1OA2)

= X
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

A; = Ace in ith draw
So we want to know,

P(A1ﬂA2ﬂA3) = P(A1) P(A2|A1)XP(A3|A1OA2)
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Multiplication rule

For three events A, B, C (not necessarily independent),

P(AN BN C) = P(A) x P(B| A) x P(C| AN B)

Example. Consider taking a 3 cards from a pack of cards.
What is the probability that they are all aces?

A; = Ace in ith draw
So we want to know,

P(A1 N Ao ﬂA3) = P(A1) X P(Ag | A1) X P(A3 | Aq ﬂAg)

_ L P2
~ 5251 " 50 dﬁ)
— 0.00018
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Bayes’ Theorem
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Who was Reverend Bayes?

o English mathematician and
Presbyterian minister

o 1743: Elected Fellow of Royal
Society.

o 1761: Thomas Bayes dies

o 1763: Essay Towards Solving a
Problem in the Doctrine of
Chances read before Royal
Society of London

Reverend Thomas Bayes o 20th century: famous for solving
(c.1702 - 17 April 1761) problem of “inverse probabili@
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Bayes’ Theorem
Assume we get data D from the true state Sy of reality:
D = {data}
S = {state of the world.}

Question. Given data D what is our belief in
Se {80,81,...,8,7}?

Note that typically P(D | S;) is easy.

P(D | S)P(S)
Yo P(D[S)P(S)

P(S|D)

Probabilities P(S;) need to be assumed known a priori.

Conclusion
o]
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God'’s not playing dice, but flipping coins...

Imagine that at beginning of time, God flips a fair coin:

o If heads, then God creates two universes:
one with black-haired people, other with blond haired
people.

o If tails, then God creates one black-haired universe.

Now suppose that you are living in black-haired universe.

Then what is probability of God’s coin having landed heads?

L7
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(F|E) =

Conclusion
o]
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(F|E) = ’;f(FEE))

Conclusion
o]
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(F|E) = ’;f(FEE))

P(E|F)P(F)

Conclusion
o]
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(F|E) = ’;f(FEE))
P(E|F)P(F)

P(E|F)P(F)+ P(E|F°)P(F°)

Conclusion
o]




Random words Probability rules Conditional probabilities Bayes’ Theorem
[e]e]e} 0000000000000 00000 0000800

God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(FIE) = PP((FEE))
P(E|F)P(F)
P(E|F)P(F)+ P(E|F°)P(F°)
0.5x0.5
05x%x05+

Conclusion
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God’s flipping coins...

E = {Living in a black-haired universe.}
F = {Heads}

Given data E what is our posterior belief in F?

P(FIE) = I;((FI:_I:_))
P(E|F)P(F)
P(E|F)P(F)+ P(E|F°)P(F°)
0.5x0.5

05x05+1x05
= 1/3

Conclusion
o]
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Sentiment analysis

We get a piece of text (e.g. tweet) and we want to know:

Does it express a positive or negative sentiment?

o Let’s consider following dictionary:
C = {of, great, kind, weird, stuff, mean}

o Two two sentiments: S € {positive, negative}
o Conditional probabilities P(word | sentiment) are:
word positive negative

of 0.1 0.1
great 0.3 0.1
kind 0.3 0.1
weird 0.1 0.3
stuff 0.1 0.2

mean 0.1 0.2
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Conclusion
o]
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem
O00000e

Bayes’ Theorem! Let prior probability P(N) = 0.5:

Conclusion
o]

P(N | W1 Moool W4) — P(Wyn...nW, | N)P(N)

P(WyN...0 Wy | N)P(N)+P(WyN...nW, | NC)P(NC)
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem! Let prior probability P(N) = 0.5:

P(N | W1 Moool W4) — P(Wyn...nW, | N)P(N)

P(WyN...0W, | N)P(N)+P(W;n...nW, | NC)P(NF)
0.3x

L7
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem! Let prior probability P(N) = 0.5:

P(N | W1 Moool W4) — P(Wyn...nW, | N)P(N)

P(WyN...0Wy | N)P(N)+P(WqiN...nW, | NC)P(NC)
0.3x0.1x0.1x0.2%x
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem! Let prior probability P(N) = 0.5:

P(N | W1 Moool W4) — P(Wyn...nW, | N)P(N)

P(WyN...0 Wy | N)P(N)+P(WyN...nW, | NC)P(NC)

— 0.3x0.1x0.1x0.2%x0.5

0.3%0.1%x0.1x0.2x0.5+0.1x0.3%x0.1x0.1x0.5
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem
O00000e

Bayes’ Theorem! Let prior probability P(N) = 0.5:

P(N | W1 Moool W4) — P(Wyn...nW, | N)P(N)

Conclusion
o]

P(WyN...0Wy | N)P(N)+P(WqiN...nW, | NC)P(NC)
— 0.3x0.1x0.1x0.2%x0.5

0.3%0.1%x0.1x0.2x0.5+0.1x0.3%x0.1x0.1x0.5

= 0.67
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Tweet: “weird kind of stuff”

Is above tweet positive or negative?

Define our events:
o W;=ithword (i=1,2,3,4)
o N = negative sentiment

Bayes’ Theorem! Let prior probability P(N) = 0.5:

_ P(WyN...0W, | N)P(N)
P(N ’ Win...n W4) = PWin..nWjg | N1)P(N)+P?W1m...mw4 [ NCYP(NC)

— 0.3x0.1x0.1x0.2%x0.5
0.3%0.1%x0.1x0.2x0.5+0.1x0.3%x0.1x0.1x0.5

= 0.67

We have secretly made use of conditional independence!
We relax this assumption in the afternoon. @
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Conclusion

In this class we have learned:

Laplace’s definition of probability

Rules for combining event and probabilities
Independence simplifies calculations.

©

Conditional probabilities are also easy.

© 0 0 ©

Bayes’ Theorem to learn about reality from data.
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